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The image of Dirac measures % by the operator A of the construction of 
Prigogine and collaborators is shown to be concentrated in the stable manifold 
X~t(x) and its density function p is studied for Bernoulli shifts. The value 
v~ =exp[-h~,(T)], where h~,(T) is the Kolmogorov entropy, appears as a 
critical poin~ for the behavior of p. It is also proved that no loss of information 
is involved by passing from the dynamical system to the Markov process when 
v,, > 1/2. The discussion is based on the introduction of an invariant for 
Markov systems that generalizes the usual Kolmogorov entropy for dynamical 
systems. 
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1. I N T R O D U C T I O N  

We study two aspects related to the cons t ruct ion  of a Markov  process 

"equivalent"  to a K-system proposed recently by Prigogine and  

collaborators.(~ 3) It is a pleasure to dedicate this work to Prof. 

I. Prigogine, whose influence has been so profound in the at tempts to 
unders tand  the irreversibility of na ture  and  whose ideas are at the origin of 

the problems treated in this paper. 
We recall briefly Prigogine 's  cons t ruc t ion  of the Markov  process and  

note that the measurable  spaces we consider are Lebesgue. Let (~ ,  B,  #, T) 
be a K-system with generat ing a-algebra ao, an = Tnao,  n ~ Z ,  a~ c an+ 1, 
a ~ = {f2, ~b}, a ~  = N, # the invar ian t  normal ized  measure #(s  1, and  
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T the invertible measurable point transformation. Then we construct an 
invertible operator A by 

A=- ~ 2,E,+R_o~ (1) 
n ~ Z  

(where E,---Rn-R~_I, R,=E a" is the conditional expectation ~4) with 
respect to an taken with #; then R~ = id and R _~  is a projector over the 
constants), and {2,~ [0, 1], n~Z} is a nonincreasing sequence such that 
2, ,~ 1, n--* -oo,  2,-*0,  n ~  o% and {v, = 2 ,+t2~ 1, n~Z} is a decreasing 
sequence. The operator A is bounded, Hermitian, and invertible in a dense 
set of L2(#), and allows the construction of a bounded, doubly stochastic 
operator W= A-I UA nonunitarily equivalent to the operator Uf =fo T 
and given by 

W = ( ~  ~,,R,+v~)U (2) 

where f , , = v , , - v , , + l ) 0 ,  v o ~ = l i m , . ~ v , ,  and 0~<v~<l .  The Markov 
system (s N, #, Q w) "equivalent" to the K-system is then generated by the 
transition kernel Q w : f 2 x ~  [0, I], Qw(x,B)=(W1B)(x), BeN, x~f2, 
and /z is the invariant measure, since f#(dx)Qw(x, B)=#(B).  We have 
proved in Ref. 4 that for K-systems with finite Kolmogorov entropy the 
measure Q w(x,. ) is strictly concentrated in the stable manifold X~(Tx) of 
the transformed point of x by T and that it has a point mass 
Qw(x, {Tx})~> v~ if v~ >0, with the equality holding for Bernoulli shifts. 

The first aspect we discuss here refers to the interpretation of the 
operator A. We have argued in Ref. 5 that the elementary objects whose 
evolution in time should be considered are probability densities Sx with 
support in the stable manifolds of points x �9 g2, since these points share the 
same behavior in the future (see also Ref. 6 in this context). We must look 
then for an operator A transforming the elementary probability density 
evolving with U* which is 6~, a Dirac 0-function centered in x, in 
'~x = A6~. The simplest possible A satisfying this requirement is given by 
(1) and then the observable evolution will be given by W*=AU*A -1. 
Here U* is the adjoint of U in L2(p), which acts as (U'f)(x)=f(T-~x) on 
bounded measurable functions and W*, the adjoint of W in L2(#), gives 
the observable evolution of probability densities in the Markov system 
(f2, N',/z, Q w). In relation to this interpretation of A we prove in Section 2 
that for K-shifts the measure Qa(x, B)=(A1B)(x), Be~, induced by A 
(whose density is c~.~) is concentrated in the stable manifold X~t(x) of x, i.e., 
Q~(x, x~t(x))= 1, and when 2, = 1, n ~< q, it is concentrated in 

B(-q, oo)(x) = {yef2:  yj=xj, j>>- -q} c X~t(x) 
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For Bernoulli shifts in this last case we have that QA(X,. ) is absolutely con- 
tinuous in B(-q ,  oe)(x) with respect to the measure induced by # in this 
set with density p. If for n>~q one has 2 n =c n-q, e <  1, then v~o = c  and p is 
bounded for c<exp[ -h , (T)]  and unbounded for c>exp[-h , (T)] ,  
where h,(T) is the Kolmogorov entropy of the shift. When {2,, n>~q} 
decreases as e -~(~), with ~b(n) growing faster than n, p is bounded. 

The second aspect we treat (Section 3) is an attempt to explain in 
what sense there is no loss of information when passing from the K-system 
to the Markov system Q w. We define an invariant/~, of Markov systems, 
which can be interpreted as the maximum loss of information in one step of 
the Markov system when the process is regarded through all possible 
future a-algebras. The invariant/~, is a generalization to Markov systems 
of the usual Kolmogorov entropy of dynamical systems. We show that for 
the process Qw one has h~(Qw ) = h~,(T) if voo > 1/2 and that this equality is 
a consequence of the fact that if one regards the system considering only 
events in any of the a-algebras a n, then two fibers ~ and ~' in a~ have the 
same future with the Markov evolution if and only if their future with the 
dynamical system is the same. These results show, then, in what sense there 
is no loss of information when the evolution is generated by the Markov 
process Q w instead of T. Moreover, if/~, is evaluated for a class of coarse 
grainings obtained through projections generated by future a-algebras, it 
turns out to be infinite. 

2. PROPERTIES OF THE M E A S U R E  I N D U C E D  IN THE 
STABLE M A N I F O L D S  

We study here the density cf x = A6x image by A of the 6-function 6 x 
centered at x, which corresponds to the measure % concentrated in {x}. 
The function 3.~ will be the density of the m e a s u r e  QA(X, .), where 
QA:(2 x ~---, [0, 1] is the transition kernel generated by the Hermitian, 
doubly stochastic operator A given by (1). It is this m e a s u r e  QA(X, .) that 
is the object of interest to us. Let the dynamical system (f2, N, #, T) now be 
a Bernoulli shift; then s'2=S z, where S =  {1,..., d} is the alphabet of the 
shift and # is the product measure induced in S z by the probability vector 
(HI - . .Ha )  in S. The transformation T is the shift (Tx)n=xn+ ~ and the 
generating a-algebrh a o is ~/j~<0 TJc~, where c~ is the partition 
:~ = {Xi: x~Xi<*Xo = i}. The stable manifold X~t(x) of x ~ Q  is the disjoint 
union 
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where 

2~t(x)= {z6f2:zi=x], j>/k, zk-l:/:Xk 1) 

Using the method in Ref. 4, one finds (.~, - 2, - 2, + 1): 

Qk =- Q A(X, f(]t(x) ) 

= [ H k _ l ( x )  1 - 1 ]  ~ Hk-l(X) Hk(x)"'Hg+,-l(x)~-~k+u~ 
u=0  

where we use the notation Hk(x)-Hx~. One easily checks ~k~zQk= 1 
and then QA(X, X ' S t ( x ) )  = 1. The disjoint sets k~,t(x) contain points that are 
more and more different from x when k increases, and consequently with 
any reasonable distance defined in the space f2 their average distance to x 
will increase with k e Z. Then, in agreement with the physical interpretation 
we have proposed for A in Ref. 5, we can make a choice for the sequence 
()~,,) such that the weights Qk are zero for k bigger than some number in Z. 
If we choose 2, = 1, n ~< q, .~ < 1, n > q, one easily checks that 

Q _ q + , = O ,  n~>l;  Q_q ,=/=0, n>~O (3) 

i.e., the measure QA(X,.) is concentrated in 

B(-q, m ) ( x ) =  {ze f2 ;Z i=Xj ,  j>~ -q} 

and this set is the disjoint union 

I 2st ,,3 B(-q, ~)(x)= ~) _~_otx~J U {x} (4) 
n~>0 

On the other hand, it follows from our discussion in Ref. 4 that what 
is finally important  is the behavior of 2, for big n, since this determines the 
value of v~ < 1. In the case v~ > 0 one has that )~ behaves asymptotically, 
when n ~ ~ ,  as c" with c < 1, and v~ = c. In the other ease v~ = 0 and this 
means that, for big n, )~, behaves as e -~"),  where r grows with n faster 
that n. We can then model in a simple way the first situation, taking 

2 , = 1 ,  n<~q; 2,,=c "-q, n>~q (5) 

We study this case in what follows. One has Q-u+~ =0 ,  n ~> 1, and 

Q q_,,=ElI q_n_~(x) ~ - l ] ( 1 - c )  

X ~ cn--rI~ q n l (X)  / /  q--n(X)'''J~I--q--n+r-l(x) (6) 
r--O 
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for n~>0. The m e a s u r e  QA(X,.) is then strictly concentrated in 
B(--q, ~)(x).  Let N be the a-algebra induced by ~ in B(-q ,  ov)(x); it is 
generated by the sets 

B ( - q - r , ~ ) ( x ) = { z : z  q j=i; , l<~j<<.r;zj=x/ , j>~-q} (7) 

where t)e S, the alphabet of the shift. The invariant Bernoulli measure # 
induces a measure #-q,x in the space (B(-q ,  ov)(x), ~ )  defined by 

~t q, x(B ( - q  - r, oo )(x)) = H,IH,2... H,r (8) 

We want to see now how QA(x, ") is distributed in (B(-q ,  ov)(x), ~ )  
and for this we define the sets (n ~> 0) 

B ( - - q - - n - r , ~ ) ( i  l ~ x  q ,--1,i2,"',ir) 

={Z:Z q , ,_j=i/,l<~j<~r;zk=Xk, k>~--q--n} (9) 

~st X These sets are contained in X q ,,( ) and they generate the a-algebra 
~ q_,~ induced by ~ in J(Stq_,,(x). One has 

/~ q , ~ ( b ( - q - n - r ,  ov)(x)) 

=Hi, . . .H~H_q_,,(x)  H_ u , ,+l(x) . . .H q_~(x) (10) 

QA(X, [~(--q--n--r, oo)) 

= H i . . . H i H  q . . . .  l (x)- i  

• ~ H q . . . .  l(X) H q , ,(x). . .H_q . . . .  l+~(x) c ' - ~ ( 1 - c )  11) 
u=0  

Formulas (10) and (1I) show that QA(X, .) is absolutely continuous 
with respect to /~-q,x in the measure space ()?~*q_~(x), ~ v-n) and its 
density there takes a constant value O - q - ,  given by 

0 q - -n=(1-C)  1 H q_l(X) l I q _ 2 ( x ) . . . H q  j(x i ( 1 2 )  ,= 

for n ~> 1, O q= 1 -  c. An equivalent statement to this last one for the 
transition probability measure Qw(x,-)  of the Markov process was given 
by Proposition 1 of Ref. 4. We conclude then that the measure Q~(x, .) is 
absolutely continuous with respect to #-q.x in the space ( B ( - q ,  oo)(x), ~ )  
and its density p eLL(~t q,x) there is 

n~O 

f~ dl~_q,~= ~ O = 1 (14) p q n 

(-q, ov)(x) n>~O 



1288 Martinez and Tirapegui 

From (13) we see that p is a step function in B(-q ,  oo)(x) taking an 
infinite number  of values there. The amplitudes of the jumps of p are 

( 1 - c )  c" 
AOn = O--q--n -- O--q--n + 1  - -  / ~  q _  l ( X ) , ,  " l~  q_n(X ) ( 1 5 )  

In order to study in more detail the properties of p, we put 

Then 

aj(x)=H_q_x(x)H q_2(x). . .H q_j(x), j ) l  

_ .5." c J 

Q q-,,=(1--C) Vn(X), tOn(X)= ~ 7 . ,  n~>0 (16) 
j = 0 a j (x )  

From (13) we see that the function p will be bounded if v,,(x) is 
uniformly bounded for all n and unbounded if this is not the case. From 
the Shannon-McMil lan-Breiman theorem (7) one knows that one can 
extract from the space (2 a set N of # measure zero such that Vx ~ t'2\N one 
has for any r 

lira - l  logH~(x) FIr_l(x)...H~_n+l(X)=h,(T) (17) 
n ~  oo iv/ 

We restrict ourselves to f2\N. Then Ve > 0, 3n~(e) such that 

e-.(h~(r)+~)<~a.(x)<~e ,,(h,(v) ~), Vn>~n~(e) (18) 

Putting t,,(x) = a.(x) exp[nh~(T)], one also has 

exp [ - !  log t , (x ) ]  ~ 1 if n--+oo (19) 

Let c<exp[-h~(T)]  ~s; then 3 e > 0  such that ce ~<s, and due to 
(18), 3nx(e) such that Vj>~nx(e) one has aj(x)>sJexp(-je).  Then 

. , (x l  < > = 1 _ - -  1 - ceg/s Ko (20) 
j ) n v ( e . )  j>n~.(~)  ~- S // 

Let _//= min H i , / 7  = sup Hi, 0 < / / ~ < / 7  < 1. Then 

.x(~)-i - - c  j .x(~)-i(~), 
2 aj(x----S ~ E = K 1  (21) 

j = 0  j = O  

From these last two inequalities and the expression (16) for v.(x) we con- 
clude v.(x)< K o + K, for all n and consequently p is a bounded function 
when c < s. An immediate consequence of this is that p ~ LP(I ~ q,~), Vp >>. 1. 
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If c > s, one can write c = se% r/> O, and if 0 < e < t/, we can choose 
n~(e) such that 

C t7 

v,,(x) > ~ > e n(" ~1, Vn >~ n~(e) (22) 

which shows that p is unbounded. We consider now 

Since 

One has 

f p P d k t _ q . ~ = ( 1 - c )  p ~ v , , ( x ) P [ 1 - H  q ,,(x)]a,,(x) (23) 
n>~O 

~st .X #_u,x(X_q_, , ( ) )  = [1 - I I _ u _  . i (x)]  a,,(x) 

1 -  H <~ l - I I_q  ._1(x)~<1-/7 

and consequently the integral in (23) will converge if 

Ip = ~ u,,(x) s"< oe, u,,(x) = v/,(x) p t,,(x) (24) 
n >10 

where t,(x) is defined after (18). The radius of convergence 7 of the power 
series in (24) is 

) '=  lim u,(x)- l /n= lim exp 

due to (19). One has 

I - p  log v,,(x)] (25) 

v,,(x) >a.(x----)= exp - log t,,(x) (26) 

and then, using (19), we obtain 

if 

7 ~< exp[ - -p  log(cs-  1)] (27) 

The series in (24) will diverge if s > 7. Using (27), this will be satisfied 

logs 
(28) P > Po ~ log cs-  1 

where Po > 1 since c > s. We see then that given c > s, there exists a number 
po > I such that p(~LP(I~ u,x) for P>Po.  We have then proved the 
following result. 
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Theorem 1. Let ( f 2 , ~ , # ,  T) be a Bernoulli shift and A =  
~.n~Z)~,En+ R_~, )~= 1, n <~q, and 2~=c "-q, n >~q, with c <  1; then one 
has: 

(a) The transition kernel QA(X,.) is strictly concentrated in the set 
B(-q,  ov)(x)~ X~t(x), the stable manifold of x, where 

B(-q,  oe ) (x )=  {x '~  12: x'j=xj, j>~ - q  } 

(b) The measure QA(x,.) is absolutely continuous with respect to the 
measure kt ~,.~ induced in B(-q,  ~)(x) by # and its density p has the 
following properties: (i) If c<exp[-h,(T)] ,  where h,(T) is the 
Kolmogorov entropy of the shift, then p is bounded and p E LP(~_q,x) for 
all p >~ 1; (ii) if c > e x p [ - h , ( T ) ] ,  then p is unbounded and there exists a 
number Po > 1 such that p ~ LP(#_q,~) for p > P0. 

Let us remark that this result gives no information when 
c=exp[-h~(T)]. However, it is easy to see that if H~ . . . . .  Hu=d -~, 
then p is unbounded but belongs to LP(t~q,x) for p~> 1. The above 
theorem refers to the case v~o > 0 ;  when voo = 0  this means that )L~ behaves 
for big n as e -~  with ~b(n) growing faster than n and then it is simple to 
see that p will be bounded. One can also check, using again the method in 
Ref. 4 to describe QA(x,.), that part  (a) of the theorem remains valid for 
K-shifts. 

3. C O N S E R V A T I O N  OF I N F O R M A T I O N  A N D  A RELATED 
I N V A R I A N T  FOR M A R K O V  S Y S T E M S  

We introduce in this section an invariant for Markov systems that can 
be interpreted as the maximal possible loss of information in one step of 
the process. Let (f2, ~ )  be a measurable space and Q a transition kernel 
Q: f2 x ~ -~ [0, 1], (x, B) ~ Q(x, B) e [0, 1]; then Q acts on the bounded 
measurable functions ( Q f ) ( x ) = ~  Q(x, d x ' ) f ( x ' )  and on the measures 
(vQ)(B)=~ v(dx ' )Q(x ' ,  B) and one has Q(x, B)=(Q1B)(x). If # is an 
invariant measure, i.e., #Q = #, then we call (f2, ~,/~, Q) a Markov system. 

Let a ~ N '  be a a-algebra and let us define a new a-algebra Q(-l)a as 
the smallest a-algebra that makes all the functions {QtA,Aea} 
measurable. If Q(-~)a c a, we say that a is a Q-invariant a-algebra and in 
this case we can interpret a as a future a-algebra in the sense that two 
points in the same fiber of a (a fiber of a is an equivalence class generated 
by the equivalence relation x ~ x' iff x and x' are not separated by any set 
of a) will have the same future when only events in a can be observed. In 
order to see this, let x and x '  belong to the same fiber ~(x) = ~(x') of a [the 
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notation ~(x) stands for the fiber of a containing x] ;  then we cannot dis- 
tinguish them at time zero and, moreover, Qn(x, A)= Q"(x', A), VA ~ a, 
Vn~> 1, where Q"(x, A ) =  Q"IA(X ) is the transition probability at time n. 
We note that Q(-1)aca means in fact that the transition kernel Q can be 
considered as a transition kernel in the space 6 of fibers of a, i.e., 
Q: 6 x a ~ [0, 1], Q(~(x), A) = Q(x, A). Let us consider now two points x 
and x'  in the same fiber of Q(-l)a; then Q"(x,A)=Q"(x',A), VA~a, 
Vn ~> 1, and they cannot be distinguished by events in a for times n i> 1, 
although they can be distinguished at time zero, since, if Q( 1)a c a, they 
can belong to different fibers of a. We can then interpret the conditional 
entropy (with respect to the invariant measure #) H~(a[ Q(-1)a) as the loss 
of information in one time step when a is the a-algebra of observable 
events. We can now define 

/~,(Q)= sup H~(a[Ql-l~a) (29) 
Q(-l)a~a 

and this quantity will represent the maximum loss of information in one 
step when the system is regarded with all possible future a-algebras. The 
quan t i ty /~(Q)  was introduced and studied in Ref. 8; it is an invariant by 
isomorphisms of Markov systems and it is a generalization of the 
Kolmogorov entropy for dynamical systems. Indeed, if (f2, N',/~, T) is a 
dynamical system, then it is a Markov system with the transition kernel 

T(x, B ) =  (Ul~)(x) = 1 ~_,~(x) 

where U = f o T  will be denoted simply by T when there is no risk of 
confusion, and one has T (- ~)a = T - l a  for any a-algebra a = N; then (29) is 
the well-known formula of Rokhlin (91 for the Kolmogorov entropy h,(T). 

Let us consider now the dynamical system (/2, ~ ,  #, T) and some 
Markov systems related to it, for which we shall study the invariant (29). 
Let a he a T-invariant a-algebra, i.e., T - l a c a ~ ;  then the operator 
if'= E~U, where E" is the conditional expectation with respect to a taken 
with/~, is doubly stochastic and generates a Markov system (~, a,/z, Qw), 
where 6 is the space of fibers of a, a denotes by an abuse of notation the 
a-algebra induced by a in 6, and the transition kernel Qw: d x a ~ [0, 1] is 
given by Qw(~(x), A ) =  (ffqA)(x), ~(x) the fiber of a containing x. We call 
this Markov system a coarse graining. Let c7 c a be a T-invariant a-algebra, 
T -  1c7 c c~; then 

E"U1A=lr-~A, A~gt 

and (E~U) ~ 1)8= T lgl. We have then 

H.(~ ] (E a U) (- ~)~) = Hu(~tl T-11~) 
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and consequently 

hu(Qw) = Sup H.(c~ [ T-l f i )  = h.(Te) 
ffA t ) ~  ~ c  a 

where h~,(Ta) is the Kolmogorov entropy of the dynamical system 
(h, a,/~, Ta) induced by the original one in the space of fibers (h, a). Since 
h.(Ta)<~h.(T), one has h.(Qw)<~h.(T ). If a is of full entropy, i.e., 
h~,(T) = H~,(al T-la),  then h.(Q w) = h.(Ta) = h.(T). 

We consider now the Markov system (f2, N,~,  Q'w) induced by 
Ig=E"U on the original space (s ~).  If the T-invariant o--algebra a is 
finer than a, a c a ,  then, since E"Ula is a-measurable, one has 
(E" U) l-  1)fi c a and consequently 

H.(a  [ (E" U) (- 1)a) ~> H.(a[  a) 

If T-~a is strictly contained in a, we consider the increasing family of 
a-algebras (a,, = T"a, n ~> 0). Then 

H,,(a.[(U'U) ~ ~)a,,)>H~(a,,[a)=nH.(allao), n > l  

and consequently/i.(Q'w) = pc. We have proved the following result: 

P r o p o s i t i o n  1. Let (f2, ~ ,  #, T) be a dynamical system and a a 
T-invariant a-algebra. Then: 

(a) The Markov system (fi, a, I~, Qw) induced in the space fi of the 
fibers of a by the doubly stochastic operator I,V= E"U is such that the 
invariant h.(Qw)=h,,(Ta)~h.(T),  where h,,(Ta) is the Kolmogorov 
entropy of the dynamical system (a, a, #, Te) induced by T in (d, a) and 
ht,(T ) is the Kolmogorov entropy of T. If a is full entropy, ~.(Qw)= h,,(T). 

(b) The Markov system (f2, N, #, Q'w) induced by W in the original 
space (f2, ~ )  is such that - ' h~,(Qw) = oo if T la is strictly contained in a. 

If our dynamical system is now a K-system (t'2, ~,/~, T) with 
generating a-algebra a o, a.  = T"a o, n ~ Z, then we can associate to it the 
Markov system (f2. N, #. Qw) through the A operator of Section 1. The 
transition probability Q w is constructed with the operator W given by (2), 
and if A e am, one has 

W I  A = ~ ,  v n E a " I  T-IA + Vm_ l l T - tA  
n~rn-- 2 

which is am_~ measurable and consequently one has Q~g~)a,~cam_~, 
which implies 

tt.(am I Q~)am)  >~ H~,(am l am-1) = h~,( V) 
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and then h~,(Qw) defined by (29) satisfies h,(Qw)>~ h,(T). We shall see that 
the equality holds in some special cases. 

Putting 

Q'~v = Z ~ , ( 1 - v ~ ) - '  E~"U 
n E Z  

we can write W = v ~  U+ ( 1 - v ~ )  Q';v. We consider now a more general 
situation. Let Q" be a transition kernel in (s ~') and U s f = f o S ,  where S 
is a point transformation in s Then, for 0 ~< 7 ~< l, the double stochastic 
operator Q---TUs+ (1 -~;) Q" generates a Markov system ((2, ~ ,  kt, Q) if 
the measure is both S-invariant and Q"-invariant. In what follows we 
assume 7>  1/2. Then S - ~ B =  {x: ( 0 1 ~ ) ( x ) >  1/2}, B e ~ .  Let a ~ M  be a 
a-algebra; then, since Q1A is O~-l)a-measurable for any A ca ,  one has that 
S - ~ =  {x: (Q1A)(x)> 1/2} is O~-l)a-measurable and consequently 
S - l a  ~ Q_ f-~la. This means that any a-algebra a that is Q-invariant, i.e., 
Q~-l~a c a, is also S-invariant, since S-~a  ~ O~-~)a ~ a, and then one has 
H~,(a] Q_ I-Ila) <~ H~,(aIS la). This implies h~(Q)~h~(S).  Since our 
operator W is of the form of Q for 7 = voo, we conclude that for v~ > 1/2 
one has h~,(Qw)<~h~,(T) and consequently we have in this case 
h,(Q~.) =h~,(T). We have proved the following. 

T h o o r e m  3. The Markov system (Q, ~ ,  I~, Qw) associated to the 
K-system ((2, ~ ,  #, T) through the doubly stochastic operator 
W = (~.,, ~ z q,, E "  + v co ) U, Q w(X, B) = ( W1 a)(x), is such that the invariant 
h~,(Qw) = h~,(T), the Kolmogorov entropy of T, when v .  > 1/2. In all other 
cases one has [z,,(Qw)>~hu(T ). 

It is important to remark that in the case v~o > 1/2 the proof of the 
above theorem implies that Q~7~)a, ,=T-~a,=a,  ~, Vn~Z,  and this 
means that if we consider a,, as the a-algebra of observable events, then any 
two fibers ~ and ~' of 6,, generate the same future Markov process if and 
only if their future with the evolution of the dynamical system is the same. 

4. C O N C L U S I O N S  

We discuss first the process Qw of Section 2, where 2 , = 1 ,  n<~q, 
2, ,=c"  q, n>>.q, v ~ = c < l .  We have seen that in this case the value 
c = e x p [ - h u ( T ) ] - s  was a critical one in the sense that the density p of 
the measure QA(x, .) in B ( - q ,  oo) (x)cX~ ' (x)  was bounded for c < s and 
unbounded for c > s .  In fact, this choice of A indicates that we should 
compare the resulting process with the one obtained by a coarse-graining 
Rq_ ~ U in the sense of Section 3, which amounts to projecting the density 
functions with R~, since RqURq=Rq_  l U, and this means that we are 
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taking aq as a a-algebra of the future, since projecting with Rq = E ~q says 
that we are identifying points in the same fiber of a o as having the same 
observable future (this class of coarse-grainings was discussed in Ref. 10 in 
relation to the definition of a nonequilibrium entropy). The difference with 
our A is that the measure Q(x, .) defined by Q(x, A ) =  (RqIA) (X)  is con- 
centrated uniformly in (B(--q,  oo)(x), ~ )  with density one, while A6 x has 
density p and we have seen then that the only case that is similar to the 
coarse-graining, which has a clear physical interpretation, is when p is 
bounded, i.e., c < s. Moreover,  the interpretation of aq as a future a-algebra 
tells us that if x '  and x" are in the same fiber of aq then A6x, and A6x,, 
should not differ very much and this is true only if c < s. What  we have 
gained using A instead of Rq is that A is an invertible operator  and then we 
can argue that it transforms the evolution of the original dynamical system 
to an equivalent representation without loss of information, a point dis- 
cussed in Section 3. Let us recall that the quantity v~o = c has a simple 
interpretation in terms of observability of the deterministic trajectory with 
the Markov process Qw (~1), since the probability of the trajectory 
(x, Tx  ..... T t x )  is v~;  then, putting v~ = e x p ( - z - ~ ) ,  we have that the time 
z of observation satisfies z < h , ( T )  -1 when c < s .  We remark that for the 
model of Section 2 the operator  W takes the simple form 
W =  c U +  (1 - c) Rq_ ~ U, showing explicitly the relation to the coarse- 
graining obtained in the limit c ~ 0. 
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